Distributed Generation Improvements in Industrial Applications

CHP Integration with Fluid Heating Processes in the Chemical and Refining Sectors

Jeff Zollar ORNL Technical Project Officer

Presented by Paul Bautista

Principal Investigators — Henry Mak Southern California Gas Company, Los Angeles, CA

Keith Davidson, Bill Major Energy Nexus Group, Carlsbad, CA

CHP Integration with Fluid Heating in Chemical and Refining Sectors

- Links to DER Strategy
 - Encourage CHP in Industry (Chemical and Refining)
 - Incremental Fluid Heating CHP Applications Could Double the CHP Potential from Traditional Steam Systems
 - Environmental and Efficiency Benefits

Impact to CHP Opportunity in Chemical and Refining Sectors

- Based on Selected Chemicals and Refining Processes
- 22 GW of Remaining New Steam CHP Potential
- 40 GW of New Fluid Heating CHP Potential
- 62 GW of Total New CHP Potential

• (7 GW of Existing CHP Capacity in Selected SICs)

CHP Integration with Fluid Heating in Chemical and Refining Sectors

Objectives

- Estimate the MW Potential of a Larger CHP Market as Compared to Traditional Steam CHP
- Evaluate Technical Issues Including Temperature Requirements and Process Integration
- Industrial Survey to Augment Field Findings
- Recommendations to Overcome Economic and Technical Hurdles

Scope of Work

PROGRESS

Completed

Task 1: Market Assessment

- Identify SICs with fluid heating processes, equipment types, temperatures
- Estimate MW potential, develop economic criteria for U.S.

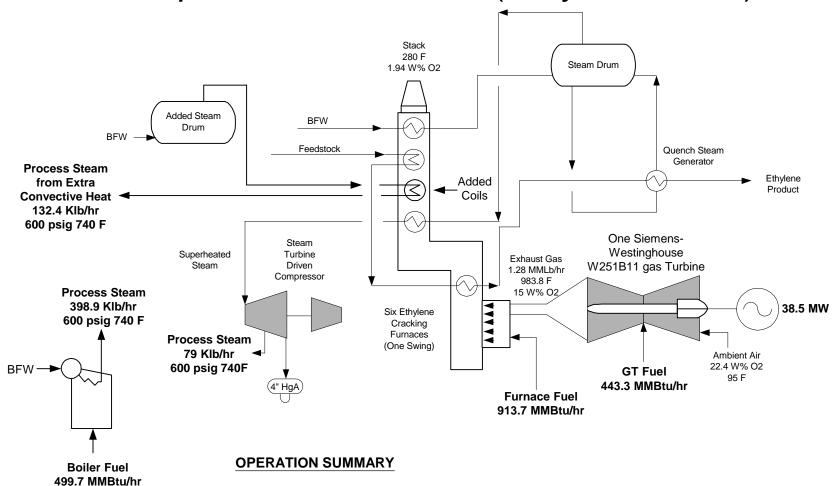
Task 2: Technical Feasibility

- Detailed evaluation of two fluid heating applications (ethylene plant and refinery)
- Investigate issues affecting feasibility of CHP integration (economic & environmental)

Task 3: Industrial Survey

- Discussion Paper
- Perform Industrial Survey
- Recommendations

Completed

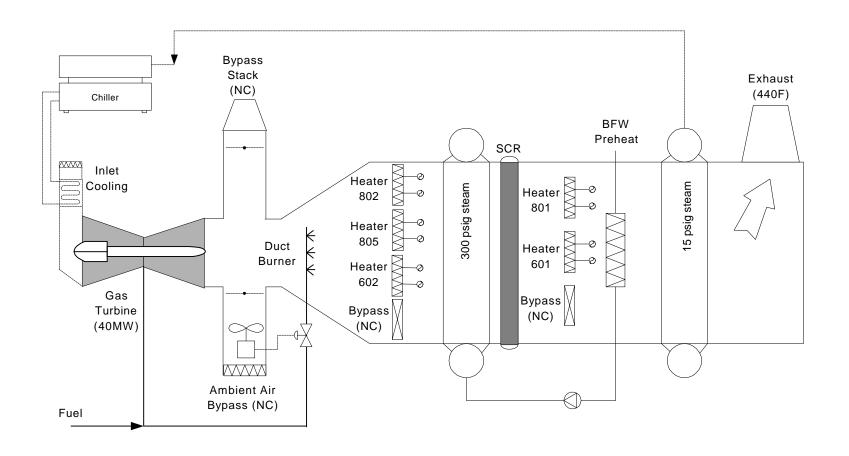

Task 4: Final Report

(awaiting final comments)

Types of Fluid Heating CHP

- Radiant GTI (e.g. ethylene plant example)
 - Gas turbine exhaust used as combustion air to furnace
 - Can be integrated with all process temperature requirements
 - Supplemental burners used
 - Design sensitive to exhaust O₂ content and temperature
 - Gas turbines with lower inlet temperatures with higher O₂ preferred
 - Single shaft turbines exhibit favorable thermal inertia characteristics in the case of an emergency shut-down
 - Our analysis showed a cogenerative efficiency of 75.9% for GTI as compared to 65.6% and 62.8% for cogenerative simple cycle and combined cycles

Example of Radiant GTI (Ethylene Plant)

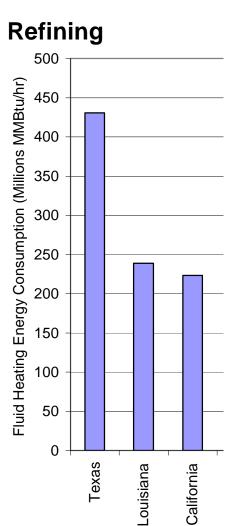


TOTAL PLANT FUEL - 1857 MMBtu/hr GENERATED POWER - 38.5 MW PURCHASED POWER- 34.4 MW TOTAL PROCESS STEAM - 610.3 Klb/hr FUEL CHARGEABLE TO POWER (FCP) - 4497 Btu/kWh COGENERATIVE EFFICIENCY - 75.9 %

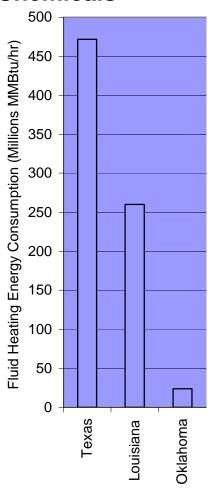
Types of Fluid Heating CHP

- Convective GTI (e.g. crude oil heaters in a refinery)
 - Gas turbine exhaust is directed to a waste heat exchanger
 - Well suited to convection heat transfer applications (no-high temperature radiant duty)
 - Not suitable for processes with high-temp endothermic "cracking" chemical reactions
 - Fluid heating and steam generation can be accomplished in a single waste heat exchanger

Example of Convective GTI (Refinery)



Fluid Heating Processes


	Fluid Heatin	g CHP (GW)		Fluid Heating CHP (GW)				
Refining Processes	Convective	Radiant	Chemical Processes	Radiant	Convective			
Distillation			Ethylene	2.7	*			
Atmospheric	11.0	2.5	Ammonia	1.0	*			
Vacuum	3.3	0.7	Carbon Black	0.3	*			
Coking	0.0	0.0	Methanol	0.3	*			
	3.6	0.8	Urea	0.1	0.6			
Catalytic Processes			Styrene	0.2	*			
Fluid Cracking	3.2	0.7	Vinyl Chloride	0.1	0.5			
Reforming	8.3	1.9	Benzene, Toulene, Xylenes	0.1	0.4			
Hydrocracking	1.5	0.4	Soda Ash	0.04	0.2			
Hydrotreating	,	Propylene Oxide	0.04	0.2				
riyarotreating	0.0	1.0	Caprolactam	0.03	0.1			
Total	36.4	8.3	Acrylonitrile	0.01	0.03			
			Total	5.0	2.1			

^{*} High temperature processes above 1000F that require a radiant GTI approach

Target Markets (Top States)

Industry Survey Opinions

- Participants
 - Plant operators, equipment vendors, engineering firms
- Major Issues
 - Environmental compliance (NOx) when supplementary fired
 - Regulatory blocks to full competition electric utility interference
 - Technical process control and oxygen deprivation
 - Low cost of energy/feedstock has hindered CHP development
 - Scare capital resources
 - Steam systems are less risky than fluid heating CHP applications – not tied directly to process

Recommendations for Future Work

- Additional analysis of GTI cost estimates and heat balances as a function of firebox temperature and different gas turbine models
- GTI demonstration project
- Evaluate fluid heating integration with solid oxide and molten carbonate fuel cells
- Investigate emission control technology
- Organize a stakeholder workshop to facilitate implementation
- Investigate other opportunities in other sectors and applications – glass, metals, cement, drying, heat treating

Progress to Date

Progress Report Submitted

- Task 1: Fluid Heating Market
 - Identify SICs with Fluid Heating (Task 1.1)
 - Database Screening (Task 1.1)
 - Economic Criteria (Task 1.2)
 - Target Markets (Task 1.3)
- Task 2: Site Evaluation
 - Performed Refinery Site Visit (Task 2.1)
 - Performed Technical Assessment (Task 2.1)
 - Economic and Environmental Assessment (Task 2.2)
 - Recommendations (Task 2.3)
- Task 3: Industrial Survey
 - Discussion Paper (Task 3.1)
 - Perform Industrial Survey (Task 3.2)
 - Recommendations (Task 3.3)
- Task 4: Final Report

Schedule

Description	Ju	I-01	Aug	g- 0 1	Sep	o-01	Oc	t-01	Nov	/-01	Dec-0	01	Jan-	-02	Feb-02	Ma	r-02	Apr-0	2	May-	-02	Jun-02		
																							_	
TASK 1 FLUID HEATING CHP MARKET																				/		ued Dra		\
TASK 2 SITE EVALUATION OF FLUID HEATING CHP												Ī								1	Fina 5/7/	al Repo '02	ort -	$\bigg)$
TASK 3 INDUSTRIAL SURVEY																					, /	$\overline{+}$		•
TASK 4 FINAL REPORT																				V 				

Bill Major

Senior Project Manager

701 Palomar Airport Rd., Suite 200 Carlsbad, California 92009 Tel. (760) 931-5820 Fax. (760) 931-5344

Direct (760) 710-1722 Email: bmajor@energynexusgroup.com